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STABILITY OF THE ONE-DIMENSIONAL MOTIONS OF A VISCOUS GAS WITH A LINEAR 
DEPENDENCE OF THE VELOCITY ON THE COORDINATES* 

G.I. BUBDE 

The stability of a new solution of the equations of one-dimensional gas 
dynamics is investigated. This solution is a generalization of the 
solutions of Sedov /l, 2/ to the case of a viscous, thermally conducting 
ideal gas with an exponential dependence of the coefficient of viscosity 
and thermal conductivity on temperature. The linearized equations for 
small perturbations (the effects of thermal conductivity are not allowed 
for in the equations for the perturbations), which contain functions of 
time and the radial coordinate in the coefficients, can be solved by 
separation of the variables. The conditions under which instability 
arises are determined from an analysis of the time parts of the solutions. 

The stability of the solutions /l/ has been considered in /3-S/. 

1. We shall investigate the stability of the motions of a viscous, thermally conducting 
gas with a velocity distribution of the form 

(Xi are the Cartesian coordinates and R (t)is a scale factor). 
After the change of variables (zi, t) + (Ye, t), where yi = x,/R(t) are Lagrangian variables, 

the equations of motion are represented in the form 

p=(y-l)pE, eiL=+ 
h = alEn, p = azEn, x = a,E" ’ 

Here, X is the coefficient ofbulkviscosity, p is the coefficient of shear strength, X =x/c,, 
where x is the thermal conductivity and E is the internal energy per unit mass. The re- 
maining symbols have their usual meanings. The indices i and k cover the values l,...,~, 
where the value of v indicates the form of the symmetry of the problem (v = 1,2,3). 

The solutions of Eq.(1.2) for motions with the velocity distribution (1.1) has the form 

p” = CR-"E2q-2, E" = U (t) E2, 5 = (Y,Yk)'/, 

%=2nS, += yVS + +(2n + ,,)RWu"+' 

v+,s= $- Rv-sU”v - (v _ 1) g 

A=a,_$%+% 

(1.3) 

(1.4) 

It follows from the equations for V and U that , when the gas is compressed (V(O), the 
magnitudes of 1 V 1 and U increase monotonically while, when the gas expands (V> O), these 
quantities, depending on the initial conditions , may both increase as well as decrease and, 
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in the latter case, there is a change in the sign of V. 
It should L7e noted that for certain isolated values of the parameters in system (1.2) 

(when n = 0, IZ = 11, for example) , there may be solutions which differ from (1.3). In this 
paper only solutions of (1.39 which are valid for any values of the parameters are investi- 
gated, 

In order to investigate the stability, let us impose small Fer~~rbat~o~a 

riere, b,denotes the angular part of the Laplacian operator. 

2. Let us initially consider the sotutions of system (1.5) and (3.61 for We case of 
unfdimensional. peztuxbations: u = EL, (&t), Q = @ (&t), em 8(&t). As a aonsequence of the 
relationships G m aH!&j -k vH end Ax ~0, both the equations of (1.6) turn out to be 
equivalent. System (1.51, (1.6) reduces to a single equation in the quantity Eiwhichenables 
one to carry out a separation of the variables 

f<m f-{-t~+V/Sein (&@9InE + &CM), bDt-_ 

The constants bckf and &"9 are determined from the boundary conditions. For example, 
in the case of a gas bounded by solid surfaces at F = R(b) and r = &A It), we obtain fram 
the condition that M,= 0 when 8 ‘=2 f and g = 5, 

With the aim of simplifying the calculations , we shall consider the squations, defining 
.lw ft) for the spatial case of a monatomic gas and spherical symmetry (y = V9,uL = 0,~ = 3). 
It then follows fram (L.4) that A =i 0 and the expansions for U and V and the equations for 
HW are xespr@sented in the form (Q1 and Qz are constants) 
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Next, by transforming this equatian , we shall, to be specific, consider pertusbations 
which develop in the main motion at the stage when the gas is compressed (V(O). Thexe are 
no difficulties in passing to the case of expansion in the final formulae. 

By using the new independent variable z, which increases monotonically with time under 
any compression regime, we get 

(R, is a constant which is equal to the value of R at the instant of time 1= 0). 
fn the case when n = 0, EZq.(2.2) has the same f5rra while the remaining formulae are 

replaced by the following: 

bet us investigate the nature of the solutions of Eq.12.2). In the case of aaiabstic 
motions (3 = O), the solution has the form HtK) = sin(tir + mu). Since, the radial component 
of the perturbation ofthevelocity is associated with the quantity X by the relationship 
U, = %HRT1 (see (1.711, we get 

z& = R-'H@) = M sin rp; M = M, b (t), q~ = cm + cp,, 

for the time part of the perturbation of the velocity IL(~). 
It follows from this expression that, during an adiabatic compression of the gas, the 

perturbation of the velocity increases in an oscillatory mannex with time. 
The nature of the solutions of Eq.(2,2) when 13fO can be represented by consideting 

perturbations with large k and small values of the parameter B -i/k2 so that o> 1,Bg-1. 
By applying the method of averaging J6f up to the second approximation, we obtain that the 
amplitude and phase the fundamental harmonic are determined by the expressions 

(2.3) 

The solution of (2.3) corresponds to vibrations which increase subject to the condition 
that dMldt>O. This relationship, taking into account the definition of z in (2.2) is re- 
presented in the form 

(2.4) 

It can be seen from this that,.at the initial instant of time, the possibility that the 
perturbations will grow is determined by the relationship between the wave number of the 
perturbation kr the viscosity of the gas uz and the constants C,Q,,i& and It, which specify 
the values of the density , energy and the compression regime. The change in the stability 
properties on further compression depends, in the first place, on the magnitude of the index 
n in the law governing the change in viscosity with temperature. 

When n > s/z t the motion, which is stable at the initial instant of time (when 1=0, 
the left-hand side of (2.41 is negative for any k), also subsequently remains stable. 
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When n ( :'I3 , compression of the gas leads to the occurrence of instability depending on 
the initial conditions since the left-hand side of (2.4) becomes positive for any k. 

In considering the behaviour of the perturbations at stages corresponding to an expansion 
of the gas in the main motion {V> 0), it is necessary to talce account of the fact that, in 
this case, on passing to Eq. (2.21, R2didt = - jf'13()ld/dT. i.e. the sign in front of B changes. 
Consequently, by changing the sign in front of B in (2.3) and allowing for the fact that, on 
passing to (2.41, &/dt (0. it is possible to draw a conclusion concerning the attenuation of 
the perturbations of the velocity on the background of the expansion of the gas for any k and 
any values of the parameters for the problem. 

It should be noted that the conclusions which has been drawn remain true while the change 
in the perturbations with time occurs, as intheiadiabatic case, in an oscillatory manner. The 
negative component, which occurs in the expression for the frequency dqVdf, indicates that, 
at the initial instant of time, the dependence of the perturbations on time is only of an 
oscillatory nature for not large values of B. When n < j/2, the magnitude of this component 
decreases with time, i-e, the dependence r&")(t) is oscillatory in this case. When = > V2 I 
this component increases, i.e. at high degrees of compression, the dependence of the per- 
turbations ontime will be monotonic. When n-V,, the magnitude of the component is constant. 

The vaJ.idity of the conclusions drawn on the basis of the approximate expressions (2.3) 
can be confirmed by the exact solutions of the equations for H(t) which exist for Individual 
values of the parameters. 

When fl = "I,, (2.2) is converted into an equation with constant coefficients and its 
solution yields an expression for the amplitude of the vibrations which is identical to (2.3). 
After expanding the expression for the frequency in series in l/wZ < it is also identical 
to the quantity dcpldf, determined from (2.3). It is obvious from the same expression that 
the oscillatory nature of the time dependence is conserved if Bg(2o. 

When Bg>20, by calculating the quantity u@) = R-“H(“) for sufficiently large T when 
R-1 _ p' (see (2.211, it can be Seen that the perturbations of the velocity increase mono- 
tonically subject to the condition 1 - Bgi2 -I- yr(Bg)2/4 - w3 > 0 or Bg > a2 + 1. Hence, when 
n = 312) an increase Ln viscosity is a stabilizing factor in the domain Bg(20 (oscillatory 
modes) and a destabilizing factor in the domain Bg> 2wr when the oscillatory modes are 
converted into manotonic modes. 

When Qz=o, (2.2) is transformed into a degenerate hypergeometric equation,thesolution 
of which has the farm 

We shall use the asymptotic representations for @and Y /8/ which correspond to large 
degrees of compression: z--t CG(PZ> 3&), @(CL, j?i, Z) - ezz"R, y (cc, BS zf - 2-Y z--f Ot~<'ij& @(a, B, 
2) -+ 1, Y (a, fi, 2) 21-B. 

Taking account of the definition of the variables w and z and the relationships U(K) = 

A-lH("l, we obtain, in the case of the time part of the perturbation of the velocity 

(Cl’ and c2' axe constants). 
It can be seen from the first expression that, when n>V2, the oscillatory nature of 

the time dependence of the perturbations is replaced by a monotonic dependence when there is 
sufficient compression of the gas. It follows from the second expression that, when ?s< V,) 
compression leads to an oscillatory increase in the perturbations of the velocity for any k 
for any values of the parameters. Hence, the validity of the conclusions which were drawn on 
the basis of the approximate expressions (2.3) is not confined to the domain of large k and 
small B. 

The analysis of the time parts of the perturbations which has been presented above re- 
ferred to the case of a monatomic gas and spherical symmetry. In other cases, the I%rMhold 
value of n differs from af2. 

Let us now briefly consider the changes in the nature of the dependence u(k) (f) which are 

due to the non-univariate nature of the perturbations. Restricting ourselves to the case Of 
a monatomic gas and spherical symmetry and, for simplicity, only considering the value n = 3/2, 
we reduce system (1.51, (1.6) to a single equation in if. This equation can be solved by 
separation of the variables 
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H = r, Hk) (4 P’ (E) Y 1 (e, ‘p) 
k 

where Yl (6,~) are spherical harmonics and the functions f(k)(E) are defined in (2.1). 
The equations for ZW have the form 

* + +1+ q,)$ + 

(~+~[4142--z(1+l)]~~+ 

* [PsQz - 7 l(1 + I,] s - &(2 + i)HW= 0 

g1 = V,h* + 12 

’ 
rlz = h2 + 7, qa = V,hZ +3; h2 = k2 + 

7, (I + 1) 

where T and B are defined in (2.2). 
Above all, it is obvious from an analysis of the characteristic equation that a pair of 

real roots appears in the case of non-univariate perturbations which, for sufficiently small 
B, correspond to monotonic modes of instability. 

The effect of the non-univariate character of the perturbations on the vibrational modes 
involves a change in the frequency of the vibrations and the size of the decrement in the 
factor describing the viscous damping. In the case of the most critical lower levels of the 
spectrum of perturbations (small k), smaller values of the decrement correspond to univariate 
perturbations. 
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